Potential Circulation Patterns Around Puerto Rico and their Influence on Larval Dispersal

by
Francisco E. Pagán López, Ph. D.
Department of Marine Sciences
University of Puerto Rico
Mayagüez campus

Long Distance Connectivity

>Larval behavior

>Nearshore current flow

>Offshore meso-scale processes

Recruitment Patterns

➤ Is the system self-seeding, and if so which physical or biological factors are determinant?

➤ Is the exchange of larvae between areas sufficient to ensure gene flow and maintain healthy populations?

General Objectives

• To implement the Regional Ocean Model System (ROMS). A free-surface, hydrostatic, primitive equation ocean model that uses stretched, terrainfollowing coordinates in the vertical and orthogonal curvilinear coordinates in the horizontal.

Develop a Lagrangian numerical model for particles transport using the flow field output of the general circulation model.

Model Development: The Past

- Regional Ocean Model System (ROMS) implementation.
 - Three-dimensional
 - Primitive equation
 - Song and Haidvogel (1994)
 - Monthly (30 days) runs with a time step of 120 seconds.
- Forcing and Boundary Conditions.
 - Uses Levitus dataset for salinity and Temperature.
 - Uses Hellerman dataset for wind stress.
 - No-slip open boundaries with Orlanski Radiation.

Monthly wind stress values in the east-west and north-south directions input into the model

Monthly temperature and salinity values input into the model

19,00/

17.0°N

General Circulation Model: Grid and Mask

Domain's Smoothed Bathymetry

Tides

Diurnal

- 24.8 hours period
- Maximum magnitude of 0.15 m/s.

Seasonal pattern for the November - August period

Seasonal pattern for the September – October period

Questions and Comments